Home » Customer Experience Optimization » Bayesian of Frequentist: beoordeel je testresultaten op de juiste manier

Bayesian of Frequentist: beoordeel je testresultaten op de juiste manier

We zien te vaak situaties langskomen waarbij een resultaat ten onrechte wordt afgeschoten. Dit heeft vooral te maken met de manier waarop de resultaten geïnterpreteerd worden. In de meeste gevallen wordt een uitslag gebruikt om een ‘ja’ of een ‘nee’ antwoord te geven op de vraag of een aanpassing op de website geïmplementeerd moet worden. Terwijl een resultaat eigenlijk gezien moet worden als een analyse van het risico dat hangt aan het wel of niet doorvoeren van een aanpassing. Volg je het nog? Daarom ga ik vandaag in op de beste manier van het beoordelen van je testresultaten: de Bayesian methode. Al eerder benoemd door mijn collega Shirley in haar blog over Google Optimize en vandaag dus verder uitgelegd door moi. 

Bayesian- of Frequentist-methode

Laten we eerlijk zijn, het beoordelen van testresultaten blijft een lastig deel van ons werk. Natuurlijk willen we het liefst zoveel mogelijk positieve resultaten aan onze klant/baas/collega/vriend/vriendin kunnen laten zien, maar het moet niet ten koste gaan van de betrouwbaarheid. Om maar te zwijgen over de angst voor een vals-positief resultaat, waarbij je een aanpassing laat doorvoeren die zelfs voor een verslechtering van de resultaten zorgt. Grofweg zijn er twee manieren om een testresultaat te beoordelen. Je kunt dit doen via de Frequentist-methode of via de Bayesian-methode. Laat me even kort uitleggen wat elke methode inhoudt.

Rockin’ it Frequentist style

Als je je resultaten beoordeelt met de Frequentist-methode, test je of een gebeurtenis optreedt of niet. Het berekent de kans op herhaling van die gebeurtenis op de lange termijn. In het geval van een A/B test is jouw hypothese de gebeurtenis die je test. Als je hypothese niet optreedt (d.w.z. niet voor verbetering zorgt) dan krijg je een ‘nee’ als resultaat. Als hij wel optreedt dan is het resultaat een ‘ja’. Er zijn dus maar twee uitkomsten mogelijk.

Doin’ it the Bayesian way

De Bayesian-methode werkt uiteraard anders. Er is geen ‘ja’ of ‘nee’ uitkomst. In plaats daarvan werkt Bayesian met waarschijnlijkheden. Het berekent de kans dat jouw hypothese succesvol is op een schaal van 1% tot 100%. Hoe groter de kans, hoe zekerder je van je zaak kunt zijn, maar je bepaalt zelf vanaf wanneer je een aanname acceptabel vindt. Daarbij houd je ook rekening met andere factoren, zoals kosten en baten.

Bayesian: Worst Case vs. Best Case

Na het lezen van het bovenstaande zul je begrijpen dat wij vaker situaties tegenkomen waarin een resultaat wordt beoordeeld via de Frequentist-methode. Wij zijn van mening dat de Bayesian-methode een meer correcte manier is om een resultaat op zijn waarde te schatten. Welke voordelen heeft de Bayesian-methode nog meer?

  • Er is een beter verwachtingsmanagement. Je bent niet alleen bezig met de gemiddelde percentages, maar je kijkt ook naar wat er gebeurt als blijkt dat deze gemiddelden afwijken.
  • Het eindresultaat is een risicoanalyse waarin we kijken naar alle mogelijke effecten die het doorvoeren van een resultaat kan hebben. Wat gebeurt er in het beste geval? Maar ook, wat is het effect als we toch aan kortste eind trekken?

Het bovenstaande is voor ons dan ook de belangrijkste reden geweest om gebruik te gaan maken van de Bayesian-methode. Het maakt het interpreteren van data zeker niet altijd gemakkelijker, maar het geeft je wel de ruimte om de resultaten beter, eerlijk en sneller op hun waarde te schatten zodat je een weloverwogen beslissing kunt nemen.

Welke data ga je interpreteren?

Goed. Genoeg over de onderliggende methode. Terug naar dat waar het om gaat, namelijk het interpreteren van je resultaten. Voordat ik een aantal rapportages met je ga doornemen, wil ik graag nog even de statistieken met je doorlopen die in zo’n rapportage terugkomen.

Bayesian methode: wat ga je onderzoeken?

Testdata
Dit zijn de data die je rechtstreeks uit je test kunt halen. Op basis van deze data worden de overige statistieken berekend. Die bestaan uit:

  • het aantal variaties;
  • het aantal bezoekers per variatie;
  • het aantal conversies per variatie.

Gemiddelde conversiepercentage
Het aantal conversies gedeeld door het aantal bezoekers geeft het gemiddelde conversiepercentage per variant weer.

Verbetering
Dit is het verschil tussen de gemiddelde conversiepercentages. Het kan een verbetering aangeven, maar in sommige gevallen ook een verslechtering. In dat geval wordt er een negatief percentage weergegeven.

Betrouwbaarheidsintervallen
Elk gemiddeld percentage wordt voorzien van een betrouwbaarheidsinterval. Een betrouwbaarheidsinterval geeft de onder- en de bovengrens van het gemiddelde percentage aan. Dit wordt ook wel de foutmarge genoemd. Het is een meting van de afwijking die het gemiddelde in de praktijk zou kunnen hebben. In onze rapportage maken we gebruik van intervallen van 95%, wat betekent dat er een 95% kans is dat het daadwerkelijke conversiepercentage tussen de onder- en bovengrens gaat vallen.

Betrouwbaarheid
De betrouwbaarheid geeft de kans weer dat het origineel verslagen wordt door de variant. Hoe hoger dit percentage hoe kleiner het risico dat een resultaat op toevalligheden wordt gebaseerd. Betrouwbaarheid wordt dan ook weergegeven als in kans van 1% tot 100%.

Hoe beoordelen we deze testresultaten?

Grip hebben op de data en de statistieken is niet hetzelfde als een resultaat beoordelen. Want wat proberen de bovenstaande cijfers je nou te vertellen? Laten we daarom twee rapportages doornemen om te bespreken wat de data ons vertellen en hoe we daaraan conclusies kunnen verbinden.

Belangrijk om te onthouden tijdens het interpreteren van de data:

  • zoek niet direct naar een ‘ja’ of een ‘nee’, maar neem de tijd om de statistieken goed te bekijken voordat je direct een conclusie gaat trekken;
  • onthoud dat er ook niet altijd een duidelijke ‘ja’ of ‘nee’ uit te halen valt; zoals gezegd is de interpretatie van een resultaat een risicoanalyse waarbij meerdere factoren van invloed zijn, die niet allemaal in de rapportage zijn terug te vinden (zoals bijvoorbeeld de kosten die gemoeid zullen zijn met het doorvoeren van de aanpassing uit de A/B test);
  • het verbeteringspercentage is belangrijker dan het gemiddelde conversiepercentage van A en B;
  • neem een resultaat pas in overweging als het betrouwbaarheidspercentage boven een voor jou acceptabele grens zit.

Hoe beoordelen we zo’n resultaat dan? Dat gebeurt in 3 stappen. Eerst kijken we objectief naar wat we in eerste instantie zien in de aantallen, daar laten we een risicoanalyse op los en uiteindelijk komen we met een conclusie waarop we de keuze baseren om een aanpassing wel of niet door te voeren.

Het eerste voorbeeld (A is beter dan B)

Eerste conclusie: Op basis van de gemiddelde conversiepercentages per variant zou je kunnen concluderen dat we ruim 1% in conversie stijgen als we de variant implementeren (van 1,96% naar 3,10%).

Risicoanalyse: De betrouwbaarheidsintervallen laten zien dat het daadwerkelijke resultaat van het origineel ergens tussen de 1,49 – 2,52% zal zitten. Voor de variant is dit ergens tussen 2,5% en 3,79%. Er zit wel wat overlap tussen de twee bandbreedtes, dus in theorie is er een kans dat A en B gelijk aan elkaar zullen presteren.

Het verbeteringspercentage is louter positief. De kans is dus 95% dat de uiteindelijke verbetering tussen de 3,76% en de 138,23% ligt. Dat betekent dat we in het slechtste geval nog steeds een verbetering in de resultaten te pakken hebben, al is het in dat geval wel maar een bescheiden verbetering.

Eindconclusie: De variant presteert beter dan het origineel, en waarschijnlijk nog een stuk beter ook. De kans dat de variant uiteindelijk toch nog slechter gaat presteren is heel erg klein, dus we hebben hier sowieso met een verbetering te maken. Dat geldt ook voor de kans dat de verbetering 0% is, en A en B dus aan elkaar gelijk zijn. Natuurlijk blijft er wel een mogelijkheid over dat de uiteindelijke verbetering aan de lage kant is. Als de aanpassing een grote investering vraagt is dit een afweging die gemaakt moet worden. Uiteindelijk is de kans op een hoger verbeteringspercentage nog steeds het grootst.

Een tweede voorbeeld (B is gelijk aan A)

Eerste conclusie: De conversiepercentages van A en B liggen dicht bij elkaar in de buurt. Het is dan ook logisch dat de onder- en bovengrens veel overlap met elkaar vertonen. Dat betekent dat er een grote kans is dat het minimale verschil berust op toeval en niet omdat er iets daadwerkelijk slechter presteert

Risicoanalyse: Ondanks het feit dat de gemiddelde verbetering negatief is, laat het betrouwbaarheidsinterval zien dat er eigenlijk geen verschil is tussen de beide varianten. Het verschil komt nagenoeg in het midden uit, wat waarschijnlijk zal betekenen dat we uiteindelijk geen verschil zullen constateren

Eindconclusie: De nieuwe variant presteert op het oog slechter dan het origineel, de bandbreedte laat zien dat het verschil eigenlijk zo minimaal dat er geen echt verschil is te meten. Het verschil is ontstaan door toeval en er hoeft dan ook geen verdere actie te worden ondernomen. Doorvoeren is niet te adviseren.

Het laatste voorbeeld (A is beter dan B)

Eerste conclusie: De gemiddelde conversiepercentages liggen ver uit elkaar, maar de onder- en bovengrens laten wel overlap zien.

Risicoanalyse: De verbetering is echter negatief. Er is maar een hele kleine kans dat de verbetering uiteindelijk boven de 7,25% uitkomt. Er is dus wel een kans op een positief resultaat (zoals ook te zien in de overlap tussen de twee conversiepercentages), maar die kans is wel heel klein. Het doorvoeren van de aanpassingen zou dus een groot risico met zich meebrengen.

Eindconclusie: De nieuwe variant presteert slechter dan het origineel. De betrouwbaarheid is groot; dat betekent vrijwel zeker dat het verschil tussen de varianten klopt. In dit geval zal het doorvoeren van de aanpassingen dan ook leiden tot een conversiedaling en daarom niet aan te raden.

Ten slotte nog even dit

Ik hoop dat ik je wat meer inzicht heb kunnen geven in het interpreteren van testresultaten. De inschatting van het risico dat een eventuele implementatie met zich meebrengt, is het belangrijkste onderdeel. De statistieken geven daarvoor het houvast:

  • de betrouwbaarheid stelt ons in staat om vast te stellen of een test in een positieve of negatieve richting wijst. Het resultaat kan statistisch gezien significant zijn, maar in de praktijk geen winst opleveren, bijvoorbeeld omdat de implementatiekosten te hoog zijn. Het is dus belangrijk om verder te kijken dan de betrouwbaarheid alleen;
  • het gemiddelde conversiepercentage geeft een redelijke indicatie van de prestaties van de varianten. De betrouwbaarheidsintervallen geven een indicatie van de afwijkingen die daarop kunnen voorkomen. Als er geen of weinig overlap tussen de twee betrouwbaarheidsintervallen is, dan is de onzekerheid kleiner;
  • het betrouwbaarheidsinterval voor de verbetering geeft een indicatie van het resultaat dat we kunnen verwachten als we A vervangen door B. Dit is dus een belangrijke statistiek om in de eindconclusie in overweging te nemen.

Bronnen

https://support.abtasty.com/hc/en-us/articles/205811297
https://www.abtasty.com/blog/clever-stats-finally-statistics-suited-to-your-needs/
https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/
https://blog.kissmetrics.com/how-ab-testing-works/
https://conversionsciences.com/blog/ab-testing-statistics/


Geef een reactie

Het e-mailadres wordt niet gepubliceerd. Verplichte velden zijn gemarkeerd met *

Mis geen blogartikel meer!

Ontvang onze blogartikelen gewoon in jouw mailbox

Gerelateerde diensten
Interessante onderwerpen
Eva Louwen
Wij geloven dat ons team uniek is

Maak kennis met Eva

Overdag is Eva Senior Conversie-optimalisatie Consultant en draagt zij de zorg voor hogere conversiepercentages bij haar klanten en coaching van haar teamgenoten. In de avond transformeert zij naar Tweelingmama Extraordinair en draagt zij de zorg voor voldoende knuffels, kusjes en schone luiers.

Neem contact op met Eva
Blijf op de hoogte van

De laatste trends & ontwikkelingen

Mis geen blogartikel meer!

Ontvang onze blogartikelen per mail